Abstract
AbstractThis experimental, numerical and theoretical study considers the lee internal waves generated by the wake of a circular cylinder, whose axis is tilted with respect to a stable density gradient. The main difference with the case of a horizontal cylinder is that the lee waves contain a large axial velocity, which are located in a row of lobes extending downstream from the cylinder. At small tilt angles, the wavelength is equal to $2\lrm{\pi} U/ N$, $U$ being the velocity of the cylinder and $N$ the Brunt–Väisälä frequency, which can be explained by the fact that the group velocity of the waves is small. The amplitude of the waves can be predicted using the Lighthill theory for dispersive waves applied to the case of a tilted bluff body. The flow around the cylinder is modelled empirically in order to reach a quantitative prediction in good agreement with the experimental and numerical results. The spatial structure of the predicted internal waves is qualitatively correct although some discrepancies arise because the advection by the flow around the cylinder is neglected.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献