Surface manifestation of internal waves emitted by submerged localized stratified turbulence

Author:

Zhou Qi,Diamessis Peter J.

Abstract

The internal waves (IWs) radiated by the turbulent wake of a sphere of diameter $D$ towed at speed $U$ are investigated using three-dimensional fully nonlinear simulations performed in a linearly stratified Boussinesq fluid with buoyancy frequency $N$. The study focuses on a broad range of wave characteristics in the far field of the turbulent wave source, specifically at the sea surface (as modelled by a free-slip rigid lid) where the IWs reflect. Six simulations are performed at Reynolds number $Re\equiv UD/{\it\nu}\in \{5\times 10^{3},10^{5}\}$ and Froude number $Fr\equiv 2U/(ND)\in \{4,16,64\}$, where ${\it\nu}$ is viscosity. The wave-emitting wake is located at a fixed distance of $9D$ below the surface. As the wake evolves for up to $O(300)$ units of buoyancy time scale $1/N$, IW characteristics, such as horizontal wavelength ${\it\lambda}_{H}$ and wave period $T$, are sampled at the sea surface via wavelet transforms of horizontal divergence signals. The statistics of amplitudes and orientations of IW-induced surface strains are also reported. The mean dimensionless observable wavelength $\overline{{\it\lambda}}_{H}/D$ at the sea surface decays in time as $(Nt)^{-1}$, which is due to the waves’ dispersion. This observation is in agreement with a linear propagation model that is independent of the wake $Re$ and $Fr$. This agreement further suggests that the most energetic waves impacting the surface originate from the early-time wake that is adjusting to buoyancy. The most energetic dimensionless wavelength $\hat{{\it\lambda}}_{H}/D$ is found to scale as $Fr^{1/3}$ and decrease with $Re$, which causes the arrival time (in $Nt$ units) of the strongest waves at the surface to scale as $Fr^{-1/3}$ and increase with $Re$. This wavelength $\hat{{\it\lambda}}_{H}$ is also found to correlate with the vertical Taylor scale of the wake turbulence. IW-driven phenomena at the surface that are of interest to an observer, such as the local enrichment of surfactant and the transport of ocean surface tracers, are also examined. The local enrichment ratio of surface scalar scales linearly with the steepness of IWs that reach the surface, and the ratio often exceeds a possible visibility threshold. The Lagrangian drifts of ocean tracers, which are linked to the nonlinear interaction between incident and reflecting IW packets, create a local divergence in lateral mass transport right above the wake centreline, an effect that intensifies strongly with increasing $Fr$. The findings of this study may serve as a platform to investigate the generation and surface manifestation of IWs radiated by other canonical submerged stratified turbulent flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3