Thermocapillary flow regimes and instability caused by a gas stream along the interface

Author:

Shevtsova V.,Gaponenko Y. A.,Nepomnyashchy A.

Abstract

AbstractWe present the results of a numerical study of the thermocapillary (Marangoni) convection in a liquid bridge of $\mathit{Pr}= 12$ ($n$-decane) and $\mathit{Pr}= 68$ (5 cSt silicone oil) when the interface is subjected to an axial gas stream. The gas flow is co- or counter-directed with respect to the Marangoni flow. In the case when the gas stream comes from the cold side, it cools down the interface to a temperature lower than that of the liquid beneath and in a certain region of the parameter space that cooling causes an instability due to a temperature difference in the direction perpendicular to the interface. The disturbances are swept by the thermocapillary flow to the cold side, which leads to the appearance of axisymmetric waves propagating in the axial direction from the hot to cold side. The mechanism of this new two-dimensional oscillatory instability is similar to that of the Pearson’s instability of the rest state in a thin layer heated from below (Pearson, J. Fluid Mech., vol. 4, 1958, p. 489), and it appears at the value of the transverse Marangoni number ${ \mathit{Ma}}_{\perp }^{cr} \approx 39\text{{\ndash}} 44$ lower than that of the Pearson’s instability in a horizontal layer ($48\lt { \mathit{Ma}}_{\perp }^{cr} \lt 80$, depending on the Biot number). The generality of the instability mechanism indicates that it is not limited to cylindrical geometry and might be observed in a liquid layer with cold gas stream.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3