Flow instability in high-Prandtl-number liquid bridges with fully temperature-dependent thermophysical properties

Author:

Stojanović MarioORCID,Romanò FrancescoORCID,Kuhlmann Hendrik C.ORCID

Abstract

The axisymmetric steady two-phase flow of a differentially heated thermocapillary liquid bridge in air and its linear stability is investigated numerically, taking into account dynamic interfacial deformations in the basic flow. Since most experiments require a high temperature difference to drive the flow into the three-dimensional regime, the temperature dependence of the material properties must be taken into account. Three different models are investigated for a high-Prandtl-number thermocapillary liquid bridge with nominal Prandtl number ${\textit {Pr}}=28.8$ : the Oberbeck–Boussinesq (OB) approximation, a linear temperature dependence of all material properties and a full nonlinear temperature dependence of all material properties. For all models, critical Reynolds numbers are computed as functions of the volume of the liquid bridge, its aspect ratio, its dimensional size and as a function of the strength of a forced axial flow in the ambient air. Under most circumstances the OB approximation overpredicts and the linear model underpredicts the critical Reynolds number, compared with the model based on the full temperature dependence of the material properties. Among the main influence factors are the proper selection of the reference temperature and, at larger temperature differences, the temperature dependence of the viscosity of the liquid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference61 articles.

1. Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity;Nishino;J. Cryst. Growth,2015

2. Shevtsova, V.M. & Melnikov, D.E. 2001 Influence of variable viscosity on convective flow in liquid bridges. 3-D simulations of ground based experiments. In Microgravity Research and Applications in Physical Sciences and Biotechnology, Proceedings of the First International Symposium held 10–15 September, 2000 in Sorrento, Italy (ed. O. Monster & B. Schürmann), pp. 141–148. European Space Agency.

3. The validity of the Boussinesq approximation for liquids and gases;Gray;Intl J. Heat Mass Transfer,1976

4. Limit cycles for the motion of finite-size particles in axisymmetric thermocapillary flows in liquid bridges

5. The Marangoni effects;Scriven;Nature,1960

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling and modeling of the heat transfer across the free surface of a thermocapillary liquid bridge;International Journal of Numerical Methods for Heat & Fluid Flow;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3