Matched asymptotic solutions for turbulent plumes

Author:

Candelier Fabien,Vauquelin Olivier

Abstract

AbstractRecent analytical investigations have shown that the vertical evolution of turbulent plumes variables can be derived straightforwardly from the knowledge of a single function $\Gamma (z)$ (called the plume function) which is the solution of a nonlinear differential equation. This article presents matched asymptotic solutions of this equation in the cases corresponding to highly lazy or highly forced plumes. First, it is shown that, far from the source, the asymptotic expression of the plume function can be derived by means of a perturbation method based on a Padé-like approximation. The resulting outer solution is invariant under translation (with respect to the vertical coordinate) so that we are led to the classical problem concerning the location of the plume (asymptotic) virtual origin. In order to determine this virtual origin location as a function of the conditions at the source, the far-field asymptotic solution is matched to an inner expansion of the solution which is valid near the source. Comparisons between these asymptotic solutions and numerical results are finally made in order to test their validity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3