Receptivity coefficients at excitation of cross-flow waves by free-stream vortices in the presence of surface roughness

Author:

Borodulin V. I.,Ivanov A. V.,Kachanov Y. S.,Roschektaev A. P.

Abstract

AbstractThe present experimental study is devoted to examination of the vortex receptivity mechanism associated with excitation of unsteady cross-flow (CF) waves due to scattering of unsteady free-stream vortices on localized steady surface non-uniformities (roughness). The measurements are carried out in a low-turbulence wind tunnel by means of a hot-wire anemometer in a boundary layer developing over a $25\textdegree $ swept-wing model. The harmonic-in-time free-stream vortices were excited by a thin vibrating wire located upstream of the experimental-model leading edge and represented a kind of small-amplitude von Kármán vortex street with spanwise orientation of the generated instantaneous vorticity vectors. The controlled roughness elements (the so-called ‘phased roughness’) were placed on the model surface. This roughness had a special shape, which provided excitation of CF-waves having basically some predetermined (required) spanwise wavenumbers. The linearity of the stability and receptivity mechanisms under study was checked accurately by means of variation of both the free-stream-vortex amplitude and the surface roughness height. These experiments were directed to obtaining the amplitudes and phases of the vortex-roughness receptivity coefficients for a number of vortex disturbance frequencies. The vortex street position with respect to the model surface (the vortex offset parameter) was also varied. The receptivity characteristics obtained experimentally in Fourier space are independent of the particular roughness shape, and can be used for validation of receptivity theories.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3