Electroosmosis over non-uniformly charged surfaces: modified Smoluchowski slip velocity for second-order fluids

Author:

Ghosh Uddipta,Chaudhury Kaustav,Chakraborty Suman

Abstract

In the present paper we focus on deriving the modified Smoluchowski slip velocity of second-order fluids, for electroosmotic flows over plane surfaces with arbitrary non-uniform surface potential in the presence of thin electric double layers (EDLs). We employ matched asymptotic expansion to stretch the electric double layer and subsequently apply regular asymptotic expansions taking the Deborah number ($De$) as the gauge function. Modified slip velocities correct up to $O(De^{2})$ are presented. Two sample cases are considered to demonstrate the effects of viscoelasticity on slip velocity: (i) an axially periodic patterned potential and (ii) a step-change-like variation in the surface potential. The central result of our analysis is that, unlike Newtonian fluids, the electroosmotic slip velocity for second-order fluids does not, in general, align with the direction of the applied external electric field. Proceeding further forward, we show that the slip velocity in a given direction may, in fact, depend on the applied electric field strength in a mutually orthogonal direction, considering three dimensionality of the flow structure. In addition, we demonstrate that the modified slip velocity is not proportional to the zeta potential, as in the cases of Newtonian fluids; rather it depends strongly on the gradients of the interfacial potential as well. Our results are likely to have potential implications so far as the design of charge modulated microfluidic devices transporting rheologically complex fluids is concerned, such as for mixing and bio-reactive system analysis in lab-on-a-chip-based micro-total-analysis systems handling bio-fluids.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3