Using adjoint-based optimization to study kinematics and deformation of flapping wings

Author:

Xu Min,Wei Mingjun

Abstract

The study of flapping-wing aerodynamics faces a large control space with different wing kinematics and deformation. The adjoint-based approach, by solving an inverse problem to obtain simultaneously the sensitivity with respect to all control parameters, has a computational cost independent of the number of control parameters and becomes an efficient tool for the study of problems with a large control space. However, the adjoint equation is typically formulated in a fixed fluid domain. In a continuous formulation, a moving boundary or morphing domain results in inconsistency in the definition of an arbitrary perturbation at the boundary, which leads to ambiguousness and difficulty in the adjoint formulation if control parameters are related to boundary changes (e.g. the control of wing kinematics and dynamic deformation). The unsteady mapping function, as a traditional way to deal with moving boundaries, can in principle be a remedy for this situation. However, the derivation is often too complex to be feasible, even for simple problems. Part of the complexity comes from the unnecessary mapping of the interior mesh, while only mapping of the boundary is needed here. Non-cylindrical calculus, on the other hand, provides a boundary mapping and considers the rest of domain as an arbitrary extension from the boundary. Using non-cylindrical calculus to handle moving boundaries makes the derivation of the adjoint formulation much easier and also provides a simpler final formulation. The new adjoint-based optimization approach is validated for accuracy and efficiency by a well-defined case where a rigid plate plunges normally to an incoming flow. Then, the approach is applied for the optimization of drag reduction and propulsive efficiency of first a rigid plate and then a flexible plate which both flap with plunging and pitching motions against an incoming flow. For the rigid plate, the phase delay between pitching and plunging is the control and considered as both a constant (i.e. a single parameter) and a time-varying function (i.e. multiple parameters). The comparison between its arbitrary initial status and the two optimal solutions (with a single parameter or multiple parameters) reveals the mechanism and control strategy to reach the maximum thrust performance or propulsive efficiency. Essentially, the control is trying to benefit from both lift-induced thrust and viscous drag (by reducing it), and the viscous drag plays a dominant role in the optimization of efficiency. For the flexible plate, the control includes the amplitude and phase delay of the pitching motion and the leading eigenmodes to characterize the deformation. It is clear that flexibility brings about substantial improvement in both thrust performance and propulsive efficiency. Finally, the adjoint-based approach is extended to a three-dimensional study of a rectangular plate in hovering motion for lift performance. Both rigid and flexible cases are considered. The adjoint-based algorithm finds an optimal hovering motion with advanced rotation which has a large leading-edge vortex and strong downwash for lift benefit, and the introduction of flexibility enhances the wake capturing mechanism and generates a stronger downwash to push the lift coefficient higher.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3