Experimental observation of gravity–capillary solitary waves generated by a moving air suction

Author:

Park Beomchan,Cho Yeunwoo

Abstract

Gravity–capillary solitary waves are generated by a moving ‘air-suction’ forcing instead of a moving ‘air-blowing’ forcing. The air-suction forcing moves horizontally over the surface of deep water with speeds close to the minimum linear phase speed $c_{min}=23~\text{cm}~\text{s}^{-1}$. Three different states are observed according to forcing speeds below $c_{min}$. At relatively low speeds below $c_{min}$, small-amplitude linear circular depressions are observed, and they move steadily ahead of and along with the moving forcing. As the forcing speed increases close to $c_{min}$, however, nonlinear three-dimensional (3-D) gravity–capillary solitary waves are observed, and they move steadily ahead of and along with the moving forcing. Finally, when the forcing speed is very close to $c_{min}$, oblique shedding phenomena of 3-D gravity–capillary solitary waves are observed ahead of the moving forcing. We found that all the linear and nonlinear wave patterns generated by the air-suction forcing correspond to those generated by the air-blowing forcing. The main difference is that 3-D gravity–capillary solitary waves are observed ‘ahead of’ the air-suction forcing whereas the same waves are observed ‘behind’ the air-blowing forcing.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3