Author:
Saxton M. A.,Whiteley J. P.,Vella D.,Oliver J. M.
Abstract
We study the evolution of a thin, axisymmetric, partially wetting drop as it evaporates. The effects of viscous dissipation, capillarity, slip and diffusion-dominated vapour transport are taken into account. A matched asymptotic analysis in the limit of small slip is used to derive a generalization of Tanner’s law that takes account of the effect of mass transfer. We find a criterion for when the contact-set radius close to extinction evolves as the square root of the time remaining until extinction – the famous $d^{2}$-law. However, for a sufficiently large rate of evaporation, our analysis predicts that a (slightly different) ‘$d^{13/7}$-law’ is more appropriate. Our asymptotic results are validated by comparison with numerical simulations.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献