Author:
Revil-Baudard T.,Chauchat J.,Hurther D.,Eiff O.
Abstract
An experimental dataset of high-resolution velocity and concentration measurements is obtained under intense sediment transport regimes to provide new insights into the modification of turbulence induced by the presence of a mobile sediment bed. The physical interpretation of the zero-plane level in the law of the wall is linked to the bed-level variability induced by large-scale turbulent flow structures. The comparison between intrinsic and superficial Reynolds shear stresses shows that the observed strong bed-level variability results in an increased covariance between wall-normal ($w^{\prime }$) and streamwise ($u^{\prime }$) velocity fluctuations. This appears as an additional Reynolds shear stress in the near-wall region. It is also observed that the mobile sediment bed induces an increase of turbulence kinetic energy (TKE) across the boundary layer. However, the increased contribution of interaction events ($u^{\prime }w^{\prime }>0$, i.e. quadrants I and III in the ($u^{\prime },w^{\prime }$) plane) induces a decrease of the turbulent momentum diffusion and an increase of the turbulent concentration diffusion in the suspension region. This result provides an explanation for the modification of the von Kármán parameter and the turbulent Schmidt number observed in the literature for intense sediment transport.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献