An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows

Author:

Fromant Guillaume1ORCID,Thorne Peter D.2ORCID,Hurther David3ORCID

Affiliation:

1. Laboratoire d'Informatique, Signal et Image de la Côte d'Opale, Université du Littoral Côte d'Opale 1 , Calais, France

2. National Oceanography Centre 2 , Liverpool L3 5DA, Merseyside, United Kingdom

3. Laboratoroire des Ecoulements Géophysiques et Industriels (LEGI), Université Grenoble Alpes 3 , CNRS UMR 5519, Grenoble, France

Abstract

Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.

Funder

Anthony Nolan Research Institute

Publisher

Acoustical Society of America (ASA)

Reference52 articles.

1. Pulse-Doppler ultrasound and its clinical application;Yale J. Biol. Med.,1977

2. Synthetic aperture radar interferometry;Inverse Probl.,1998

3. Transport layer structure in intense bed-load;Geophys. Res. Lett.,2011

4. Controversial turbulent Schmidt number value in particle-laden boundary layer flows;Phys. Rev. Fluids,2022

5. Eddy interaction model for turbulent suspension in Reynolds-averaged Euler–Lagrange simulations of steady sheet flow;Adv. Water Resour.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3