Nonlinear dynamics of surfactant-laden two-fluid Couette flows in the presence of inertia

Author:

Kalogirou A.,Papageorgiou D. T.

Abstract

The nonlinear stability of immiscible two-fluid Couette flows in the presence of inertia is considered. The interface between the two viscous fluids can support insoluble surfactants and the interplay between the underlying hydrodynamic instabilities and Marangoni effects is explored analytically and computationally in both two and three dimensions. Asymptotic analysis when one of the layers is thin relative to the other yields a coupled system of nonlinear equations describing the spatio-temporal evolution of the interface and its local surfactant concentration. The system is non-local and arises by appropriately matching solutions of the linearised Navier–Stokes equations in the thicker layer to the solution in the thin layer. The scaled models are used to study different physical mechanisms by varying the Reynolds number, the viscosity ratio between the two layers, the total amount of surfactant present initially and a scaled Péclet number measuring diffusion of surfactant along the interface. The linear stability of the underlying flow to two- and three-dimensional disturbances is investigated and a Squire’s type theorem is found to hold when inertia is absent. When inertia is present, three-dimensional disturbances can be more unstable than two-dimensional ones and so Squire’s theorem does not hold. The linear instabilities are followed into the nonlinear regime by solving the evolution equations numerically; this is achieved by implementing highly accurate linearly implicit schemes in time with spectral discretisations in space. Numerical experiments for finite Reynolds numbers indicate that for two-dimensional flows the solutions are mostly nonlinear travelling waves of permanent form, even though these can lose stability via Hopf bifurcations to time-periodic travelling waves. As the length of the system (that is the wavelength of periodic waves) increases, the dynamics becomes more complex and includes time-periodic, quasi-periodic as well as chaotic fluctuations. It is also found that one-dimensional interfacial travelling waves of permanent form can become unstable to spanwise perturbations for a wide range of parameters, producing three-dimensional flows with interfacial profiles that are two-dimensional and travel in the direction of the underlying shear. Nonlinear flows are also computed for parameters which predict linear instability to three-dimensional disturbances but not two-dimensional ones. These are found to have a one-dimensional interface in a rotated frame with respect to the direction of the underlying shear and travel obliquely without changing form.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference46 articles.

1. Nonlinear instability at the interface between two viscous fluids

2. Stokes-flow instability due to interfacial surfactant

3. Kalogirou, A. 2014. Nonlinear dynamics of surfactant-laden multilayer shear flows and related systems, PhD thesis, Imperial College, London. Available from: https://spiral.imperial.ac.uk/ handle/10044/1/25067.

4. Marangoni destabilization on a core-annular film flow due to the presence of surfactant

5. An in-depth numerical study of the two-dimensional Kuramoto–Sivashinsky equation

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3