Stability and Bifurcation Analysis of Two-Immiscible Liquids Film Down an Inclined Slippery Solid Substrate

Author:

Zakaria Kadry,Sirwah Magdy A.

Abstract

AbstractIn this work, the dynamic behavior of linear and nonlinear waves propagating at the separating surface between two thin layers of viscous Newtonian fluids is studied in the presence of the effect of insoluble surface surfactant. The two liquids are confined between two infinite rigid parallel plates and assumed to have different densities and viscosities. The equations of evolution for surface-wave elevation and concentration of surfactant are derived using the lubrication approximation. In the linear stage, by utilizing the normal mode approach, we have derived the dispersion relation that relates the wave angular frequency to the wave number and other parameters that is solved numerically to inspect the influences of some selected parameters on the stability criteria of the fluid flow. Also, analytical expressions for the growth rate as well as its maximum value with corresponding wave number are obtained in the special case of long-wave limiting. It is concluded that the Marangoni number$$\text {Ma}$$Mahas acquired a significant stabilizing influence on the fluid flow, whereas the inverse of the slippery length of substrate plate$$\beta$$β, resorts to the destabilize the motion of the interfacial waves. Consequently, both of the Marangoni number and the substrate slippy coefficient can be utilized to control the film flow regime, where they preserve the film laminar flow and tend to prevent the film breakdown. These can be useful in many industrial applications such as coating processes, heat exchangers, cooling microelectronic devices, chemical reactors, food processing, thermal protection design of combustion chambers in rocket engines and operation of Laser cutting and heavy casting production processes.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Physics and Astronomy,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3