Vapour-bubble nucleation and dynamics in turbulent Rayleigh–Bénard convection

Author:

Narezo Guzman Daniela,Frączek Tomasz,Reetz Christopher,Sun Chao,Lohse Detlef,Ahlers Guenter

Abstract

Vapour bubbles nucleating at micro-cavities etched into the silicon bottom plate of a cylindrical Rayleigh–Bénard sample (diameter $D=8.8$  cm, aspect ratio ${\it\Gamma}\equiv D/L\simeq 1.00$ where $L$ is the sample height) were visualized from the top and from the side. A triangular array of cylindrical micro-cavities (with a diameter of $30~{\rm\mu}\text{m}$ and a depth of $100~{\rm\mu}\text{m}$) covered a circular centred area (diameter of 2.5 cm) of the bottom plate. Heat was applied to the sample only over this central area while cooling was over the entire top-plate area. Bubble sizes and frequencies of departure from the bottom plate are reported for a range of bottom-plate superheats $T_{b}-T_{on}$ ($T_{b}$ is the bottom-plate temperature, $T_{on}$ is the onset temperature of bubble nucleation) from 3 to 12 K for three different cavity separations. The difference $T_{b}-T_{t}\simeq 16$  K between $T_{b}$ and the top plate temperature $T_{t}$ was kept fixed while the mean temperature $T_{m}=(T_{b}+T_{t})/2$ was varied, leading to a small range of the Rayleigh number $Ra$ from $1.4\times 10^{10}$ to $2.0\times 10^{10}$. The time between bubble departures from a given cavity decreased exponentially with increasing superheat and was independent of cavity separation. The contribution of the bubble latent heat to the total enhancement of heat transferred due to bubble nucleation was found to increase with superheat, reaching up to 25 %. The bubbly flow was examined in greater detail for a superheat of 10 K and $Ra\simeq 1.9\times 10^{10}$. The condensation and/or dissolution rates of departed bubbles revealed two regimes: the initial rate was influenced by steep thermal gradients across the thermal boundary layer near the plate and was two orders of magnitude larger than the final condensation and/or dissolution rate that prevailed once the rising bubbles were in the colder bulk flow of nearly uniform temperature. The dynamics of thermal plumes was studied qualitatively in the presence and absence of nucleating bubbles. It was found that bubbles enhanced the plume velocity by a factor of four or so and drove a large-scale circulation (LSC). Nonetheless, even in the presence of bubbles the plumes and LSC had a characteristic velocity which was smaller by a factor of five or so than the bubble-rise velocity in the bulk. In the absence of bubbles there was strongly turbulent convection but no LSC, and plumes on average rose vertically.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference54 articles.

1. Heat transfer mechanisms in bubbly Rayleigh–Bénard convection;Oresta;Phy. Rev. E,2009

2. From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection

3. The thermal regime of vapour bubble collapse at different Jacob numbers

4. The added mass of an expanding bubble With an Appendix by A. Prosperetti, C. D. Ohl, A. Tijink, G. Mougin J. Magnaudet.

5. Enhanced heat transport by turbulent two-phase Rayleigh–Bénard convection;Zhong;Phys. Rev. Lett.,2009

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3