Experimental investigation of heat transport in homogeneous bubbly flow

Author:

Gvozdić BiljanaORCID,Alméras Elise,Mathai VargheseORCID,Zhu Xiaojue,van Gils Dennis P. M.,Verzicco RobertoORCID,Huisman Sander G.,Sun ChaoORCID,Lohse DetlefORCID

Abstract

We present results on the global and local characterisation of heat transport in homogeneous bubbly flow. Experimental measurements were performed with and without the injection of ${\sim}2.5~\text{mm}$ diameter bubbles (corresponding to bubble Reynolds number $Re_{b}\approx 600$) in a rectangular water column heated from one side and cooled from the other. The gas volume fraction $\unicode[STIX]{x1D6FC}$ was varied in the range 0 %–5 %, and the Rayleigh number $Ra_{H}$ in the range $4.0\times 10^{9}{-}1.2\times 10^{11}$. We find that the global heat transfer is enhanced up to 20 times due to bubble injection. Interestingly, for bubbly flow, for our lowest concentration $\unicode[STIX]{x1D6FC}=0.5\,\%$ onwards, the Nusselt number $\overline{Nu}$ is nearly independent of $Ra_{H}$, and depends solely on the gas volume fraction $\unicode[STIX]{x1D6FC}$. We observe the scaling $\overline{Nu}\,\propto \,\unicode[STIX]{x1D6FC}^{0.45}$, which is suggestive of a diffusive transport mechanism, as found by Alméras et al. (J. Fluid Mech., vol. 776, 2015, pp. 458–474). Through local temperature measurements, we show that the bubbles induce a huge increase in the strength of liquid temperature fluctuations, e.g. by a factor of 200 for $\unicode[STIX]{x1D6FC}=0.9\,\%$. Further, we compare the power spectra of the temperature fluctuations for the single- and two-phase cases. In the single-phase cases, most of the spectral power of the temperature fluctuations is concentrated in the large-scale rolls/motions. However, with the injection of bubbles, we observe intense fluctuations over a wide range of scales, extending up to very high frequencies. Thus, while in the single-phase flow the thermal boundary layers control the heat transport, once the bubbles are injected, the bubble-induced liquid agitation governs the process from a very small bubble concentration onwards. Our findings demonstrate that the mixing induced by high Reynolds number bubbles ($Re_{b}\approx 600$) offers a powerful mechanism for heat transport enhancement in natural convection systems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3