Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres

Author:

Vreman A. W.

Abstract

A statistically stationary homogeneous isotropic turbulent flow modified by 64 small fixed non-Stokesian spherical particles is considered. The particle diameter is approximately twice the Kolmogorov length scale, while the particle volume fraction is 0.001. The Taylor Reynolds number of the corresponding unladen flow is 32. The particle-laden flow has been obtained by a direct numerical simulation based on a discretization of the incompressible Navier–Stokes equations on 64 spherical grids overset on a Cartesian grid. The global (space- and time-averaged) turbulence kinetic energy is attenuated by approximately 9 %, which is less than expected. The turbulence dissipation rate on the surfaces of the particles is enhanced by two orders of magnitude. More than 5 % of the total dissipation occurs in only 0.1 % of the flow domain. The budget of the turbulence kinetic energy has been computed, as a function of the distance to the nearest particle centre. The budget illustrates how energy relatively far away from particles is transported towards the surfaces of the particles, where it is dissipated by the (locally enhanced) turbulence dissipation rate. The energy flux towards the particles is dominated by turbulent transport relatively far away from particles, by viscous diffusion very close to the particles, and by pressure diffusion in a significant region in between. The skewness and flatness factors of the pressure, velocity and velocity gradient have also been computed. The global flatness factor of the longitudinal velocity gradient, which characterizes the intermittency of small scales, is enhanced by a factor of six. In addition, several point-particle simulations based on the Schiller–Naumann drag correlation have been performed. A posteriori tests of the point-particle simulations, comparisons in which the particle-resolved results are regarded as the standard, show that, in this case, the point-particle model captures both the turbulence attenuation and the fraction of the turbulence dissipation rate due to particles reasonably well, provided the (arbitrary) size of the fluid volume over which each particle force is distributed is suitably chosen.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3