Turbulence characteristics of particle-laden pipe flow

Author:

VREMAN A. W.

Abstract

Turbulence characteristics of vertical air–solid pipe flow are investigated in this paper. Direct numerical simulations of the gas phase have been performed, while the solid particles have been simulated by a Lagrangian approach, including particle collisions. The modelling of wall roughness is shown to be important to obtain agreement with experimental data. Reynolds stresses and Reynolds stress budgets are given for both phases and for a wide range of solid–air mass load ratios (mass loads), varying from 0.11 to 30. Air turbulence intensities, Reynolds shear stress, and turbulence production reduce with increasing mass load. The mean air profile does not alter for low mass loads. In this regime, a simple theory predicts that the reduction of air turbulent production relative to unladen turbulent production is approximately equal to the mass load ratio. The insight that the solids Reynolds shear stress can be significant, even for low mass loads, is essential for this explanation. It is shown that at least two mechanisms cause the turbulence reduction. In addition to the classically recognized mechanism of dissipation of turbulent fluctuations by particles, there is another suppressing mechanism in inhomogeneous flows: the non-uniform relative velocity of the phases, created because particles slip at the wall, collide, and slowly react with the continuous phase. Investigation of the air turbulent kinetic energy equation demonstrates that the relative reduction of air pressure strain is larger than the reduction of turbulent production and dissipation, and pressure strain may therefore be a cause of the reduction of the other quantities. The fluctuational dissipation induced by the drag forces from particles is small compared to the other terms, but not negligible. For intermediate and high mass loads the air turbulence remains low. The relatively small turbulence intensities are not generated by the standard turbulent mechanisms any more, but directly caused by the particle motions. The particle–fluid interaction term in the turbulent kinetic energy equation is no longer dissipative, but productive instead. On increasing the mass load, the radial and azimuthal fluctuations of the particles grow. The corresponding reduction of solids anisotropy is an effect of the inter-particle collisions, which act as a solids pressure strain term. For intermediate and high mass loads, fluctuational drag force and particle collisions appear to be the relevant dissipation mechanisms in the solids fluctuational energy equation. In contrast to the air turbulent production, the solids ‘turbulent’ production term has the same level for low and high mass loads, while it attains a clear local minimum between. With increasing mass load, large-scale coherent turbulent fluid structures weaken, and eventually disappear. Simultaneously, the fluid fluctuations at relatively small length scales are enhanced by the motion of the particles. The highest particle concentration occurs near the wall for low mass loads, but on increasing the mass load, the concentration profile becomes uniform, while for the highest mass load particles accumulate in the centre of the pipe. Two-point correlation functions indicate that the addition of a small number of small solid particles to a clean pipe flow increases the streamwise length scale of the turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3