Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances

Author:

Turner Jacob M.,Kim Jae Wook

Abstract

High-accuracy numerical simulations are performed to study aeroacoustic source mechanisms of wavy leading edges (WLEs) on a thin aerofoil undergoing vortical disturbances. This canonical study is based on a prescribed spanwise vortex travelling downstream and creating secondary vortices as it passes through the aerofoil’s leading edge. The primary aim of the study is to precisely understand the relationships between the vortex-induced velocity perturbation and the wall pressure fluctuation on the WLE geometry. It is observed that by increasing the size (amplitude) of the WLE the source strength at the peak region is reduced rapidly to a certain point, followed by a saturation stage, while at the root (trough) it remains fairly consistent regardless of the WLE size. This observation is demonstrated to be the consequence of three-dimensional vortex dynamics taking place along the WLE. One of the most profound features is that a system of horseshoe-like secondary vortices are created from the WLE peak region upon the impingement of the prescribed vortex. It is found that the horseshoe vortices produce a significantly non-uniform velocity perturbation in front of the WLE leading to the disparity in the source characteristics between the peak and root. The alterations to the impinging velocity perturbation are carefully analysed and related to the wall pressure fluctuation in this study. In addition, a semi-analytic model based on Biot–Savart’s law is developed to better understand and explain the role of the horseshoe vortex systems and the source mechanisms.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3