On the reduction of aerofoil–turbulence interaction noise associated with wavy leading edges

Author:

Kim Jae Wook,Haeri Sina,Joseph Phillip F.

Abstract

An aerofoil leading-edge profile based on wavy (sinusoidal) protuberances/tubercles is investigated to understand the mechanisms by which they are able to reduce the noise produced through the interaction with turbulent mean flow. Numerical simulations are performed for non-lifting flat-plate aerofoils with straight and wavy leading edges (denoted by SLE and WLE, respectively) subjected to impinging turbulence that is synthetically generated in the upstream zone (free-stream Mach number of 0.24). Full three-dimensional Euler (inviscid) solutions are computed for this study thereby eliminating self-noise components. A high-order accurate finite-difference method and artefact-free boundary conditions are used in the current simulations. Various statistical analysis methods, including frequency spectra, are implemented to aid the understanding of the noise-reduction mechanisms. It is found with WLEs, unlike the SLE, that the surface pressure fluctuations along the leading edge exhibit a significant source-cutoff effect due to geometric obliqueness which leads to reduced levels of radiated sound pressure. It is also found that there exists a phase interference effect particularly prevalent between the peak and the hill centre of the WLE geometry, which contributes to the noise reduction in the mid- to high-frequency range.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3