Characterisation of drag and wake properties of canopy patches immersed in turbulent boundary layers

Author:

Taddei S.,Manes C.,Ganapathisubramani B.

Abstract

The wakes and the drag forces of canopy patches with different densities, immersed in turbulent boundary layers, are investigated experimentally. The patches are circular (with outer diameter $D$) and are made of several identical circular cylinders (height, $H$, and diameter, $d$). The bulk aspect ratio of all of the patches ($AR=H/D$) was fixed at 1 and the patch density (${\it\phi}=N_{c}d^{2}/D^{2}$, also referred to as the solidity) is altered by varying the number of cylinders ($N_{c}$) in the patch. Drag measurements show that the patch drag coefficient increases with increasing density. However, the drag coefficient of the highest investigated density (${\it\phi}\approx 0.25$) is greater than the drag coefficient of a solid patch (i.e. ${\it\phi}=1$, which is a solid cylinder with $AR=1$). Particle image velocimetry (PIV) measurements were carried out along the streamwise–wall-normal ($x$$y$) plane along the centreline of patch and in the streamwise–spanwise ($x$$z$) plane at its mid height (i.e. $y=H/2$). Mean velocity fields show that the porosity of the patch promotes bleeding along all directions. It was observed that bleeding along the vertical/horizontal direction increases/decreases with increasing ${\it\phi}$. Furthermore, it was also observed that bleeding along the lateral direction dictates the point of flow separation along the sides of the patch and makes it independent of ${\it\phi}$. All of these aspects make wakes for porous patches markedly different from their solid counterpart and provide a rational basis to explain the observed trends in the drag coefficient.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3