Wake structure of an array of cylinders in shallow flow

Author:

He FeiORCID,Ghisalberti MarcoORCID,An HongweiORCID,Draper ScottORCID,Branson PaulORCID,Ren ChengjiaoORCID,Cheng LiangORCID

Abstract

Although there is a range of approaches for classifying the wake structure behind an array of obstacles, these approaches provide inconsistent results across different array systems. This motivates the present study to integrate and reconcile these approaches into one that is consistent across different systems. This new, transferable classification approach is based on the dimensionless flow blockage of the array and the wake stability parameter. To demonstrate this approach, a series of laboratory experiments was conducted to characterise the wake structure behind an array of emergent cylinders across a practically relevant parameter space that has not previously been explored. Two arrays with the same values of flow blockage and wake stability parameters but different sizes display the same wake structure, demonstrating the controlling influence of these two parameters on the wake structure. This approach classifies four different wake structures, which are distinct in that they display differences in instantaneous and time-averaged flow fields, temporal velocity oscillations, shear layer growth and the length of the steady wake region. The dependence of the wake structure on the two parameters is a consequence of (i) the controlling influence of blockage on the fraction of incident flow passing through the array and (ii) the ability of shallowness to suppress wake instabilities and, to a lesser extent, also influence the velocity through the array. This paper provides a predictive framework for the wake structure based on knowledge of the array geometry, and the depth and velocity of incident flow across the entire relevant practical parameter space.

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Obstacle arrangement can control flows through porous obstructions;Journal of Fluid Mechanics;2024-08-10

2. Predicting Mean Flow Through an Array of Cylinders;Geophysical Research Letters;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3