Using Reduced Tillage and Cover Crop Residue to Manage Weeds in Organic Vegetable Production

Author:

Chen Guihua,Kolb Lauren,Leslie Alan,Hooks Cerruti R. R.

Abstract

Adoption of conservation tillage practices has been slow in organic vegetable production, partially due to producers’ concerns regarding weed management. Integrating cover crops into a conservation tillage program may provide organic producers a viable weed management option enabling growers to practice conservation tillage. A four-year study was conducted to evaluate the influence of different tillage methods (two conventional and two conservation practices) jointly with a mixed winter cover crop for weed suppression, time required for hand weeding, and crop yield in organically managed eggplant (2012 and 2014) and sweet corn (2013 and 2015) production systems. Tillage treatments were conventional tillage without surface mulch (CT-BG) and with black polyethylene (plastic) mulch (CT-BP), strip-tillage (ST), and no-tillage (NT) with cover crop residue. At 2 and 7 WAT/P (weeks after transplanting/planting), intra-row weed density was higher in CT-BG and ST, and inter-row weed density was higher in CT-BG and CT-BP treatments. Time required for hand-weeding was greatest in CT-BG and least in CT-BP and NT treatments. Eggplant yield was lowest in NT treatment in 2012 but similar among treatments in 2014. Sweet corn yield was similar among treatments in 2013 but highest in ST in 2015. Though both CT-BP and NT treatments showed greater potential for weed suppression, production input was highest in CT-BP but least in NT. Implications of these findings suggest that there is a potential to use strip tillage integrating with stale seedbed tactic for weed management in organic vegetables, which reduces herbicide use, hand-labor, and overall weed management cost while maintaining high yield potential.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3