Overcoming Compaction Limitations on Cabbage Growth and Yield in the Transition to Reduced Tillage

Author:

Mochizuki Maren J.,Rangarajan Anusuya,Bellinder Robin R.,Björkman Thomas,van Es Harold M.

Abstract

Vegetable producers are increasingly interested in adopting conservation tillage practices to maintain or enhance productivity and soil health, but reducing tillage may reduce yields in cool climates. Strategies to transition from full-width tillage to zone tillage systems for cabbage (Brassica oleracea L. Group capitata) were tested with the goals of overcoming soil temperature and compaction limitations and producing crop yield and quality equivalent to conventionally tilled. Designed to achieve differential soil temperature and compaction levels, the treatments were factorial combinations of two widths of zone tillage (15 and 30 cm) and two depths of zone tillage (10 and 30 cm) plus a conventional rototilled treatment (full width and 20-cm depth) as a control. To assess the effect of treatments in the transitional year to reduced tillage, the experiment was conducted in 2003 and 2004 at different fields that were previously conventionally tilled. Increasing tillage width from 15 cm to 30 cm increased soil temperature by 1 °C in both years but had a limited effect on cabbage growth and no effect on yield. Tillage width and soil temperature may have greater impact on an earlier planting. By contrast, increasing tillage depth from 10 cm to 30 cm reduced soil penetrometer resistance by up to 1 MPa, increased plant growth by 28%, and increased yield by 22%. Growth and yield in 30-cm depth treatments were similar to conventional tillage, indicating the undisturbed, between-row areas in zone tillage treatments did not restrict growth. Zone tillage did not affect cabbage maturity or quality. Tillage depth was more important to the success of this system than tillage width; vertical tillage to 30-cm depth left between 60% and 80% of the soil surface area undisturbed and can be an effective transition to conservation tillage for transplanted cabbage.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3