From drag-reducing riblets to drag-increasing ridges

Author:

von Deyn Lars H.ORCID,Gatti DavideORCID,Frohnapfel BettinaORCID

Abstract

Small drag-reducing riblets and larger drag-increasing ridges are longitudinally invariant and laterally periodic surface structures that differ only in the details of their lateral periodicity and their size in viscous units. Due to their different drag behaviour, typically riblets and ridges have been analysed separately. By studying experimentally trapezoidal-grooved surfaces of different sizes, we address systematically the transition from riblet-like to ridge-like behaviour in a unified framework. The structure height and lateral wavelength are varied both physically, by considering eight different surfaces, and in their viscous-scaled form, by spanning a wide range of bulk Reynolds number $Re_b$ . The effective skin-friction coefficient $C_f$ is determined via pressure-drop measurement in a turbulent channel flow facility designed for accurate drag measurements. An unexpectedly rich drag behaviour is unveiled, in which different drag regimes are distinguished depending on the value of $l_g^+$ , the viscous-scaled square root of the groove area. The well-known drag-reducing regime of riblets that spans up to $l_g^+=17$ is followed by a regime in which the roughness function ${\rm \Delta} U^+$ increases logarithmically with $l_g^+$ , indicating an apparent fully rough behaviour up to $l_g^+\approx 40$ . Further increase of $l_g^+$ leads to a clear departure from the fully rough regime, and an unexpected non-monotonic behaviour of the roughness function ${\rm \Delta} U^+$ for $50< l_g^+<200$ is reported for the first time. For sufficiently large $Re_b$ and $l_g$ , it is shown that a single parameter, similar to the classical hydraulic diameter, is sufficient to describe the drag behaviour of ridges. We find that an appropriate definition of the effective channel height is crucial for interpreting the drag behaviour. When the longitudinal protrusion height of the structured surface is accounted for in the channel height definition, a laminar flow exhibits the same $C_f(Re_b)$ relation known for flat surfaces. This approach thus allows us to discern the modification of $C_f$ induced by turbulence. We provide predictive correlations for the fully rough regime and the high Reynolds number range of trapezoidal-grooved surfaces that become possible thanks to the chosen channel height definition.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3