Axisymmetric displacement flows in fluid-driven fractures

Author:

Tanikella Sri Savya,Dressaire EmilieORCID

Abstract

Displacement flows are common in hydraulic fracturing, as fracking fluids of different composition are injected sequentially in the fracture. The injection of an immiscible fluid at the centre of a liquid-filled fracture results in the growth of the fracture and the outward displacement of the interface between the two liquids. We study the dynamics of the fluid-driven fracture, which is controlled by the competition between viscous, elastic and toughness-related stresses. We use a model experiment to characterize the dynamics of the fracture for a range of mechanical properties of the fractured material and fracturing fluids. We form the liquid-filled pre-fracture in an elastic brittle matrix of gelatin. The displacing liquid is then injected. We record the radius and aperture of the fracture, and the position of the interface between the two liquids. In a typical experiment, the axisymmetric radial viscous flow is accommodated by the elastic deformation and fracturing of the matrix. We model the coupling between elastic deformation, viscous dissipation and fracture propagation, and recover the two fracturing regimes identified for single-fluid injection. For the viscous-dominated and toughness-dominated regimes, we derive scaling equations that describe the crack growth due to a displacement flow and show the influence of the pre-existing fracture on the crack dynamics through a finite initial volume and an average viscosity of the fluids in the fracture.

Funder

American Chemical Society Petroleum Research Fund

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3