Affiliation:
1. Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, MN 55455
Abstract
The focus of this paper is on constructing the solution for a semi-infinite hydraulic crack for arbitrary toughness, which accounts for the presence of a lag of a priori unknown length between the fluid front and the crack tip. First, we formulate the governing equations for a semi-infinite fluid-driven fracture propagating steadily in an impermeable linear elastic medium. Then, since the pressure in the lag zone is known, we suggest a new inversion of the integral equation from elasticity theory to express the opening in terms of the pressure. We then calculate explicitly the contribution to the opening from the loading in the lag zone, and reformulate the problem over the fluid-filled portion of the crack. The asymptotic forms of the solution near and away from the tip are then discussed. It is shown that the solution is not only consistent with the square root singularity of linear elastic fracture mechanics, but that its asymptotic behavior at infinity is actually given by the singular solution of a semi-infinite hydraulic fracture constructed on the assumption that the fluid flows to the tip of the fracture and that the solid has zero toughness. Further, the asymptotic solution for large dimensionless toughness is derived, including the explicit dependence of the solution on the toughness. The intermediate part of the solution (in the region where the solution evolves from the near tip to the far from the tip asymptote) of the problem in the general case is obtained numerically and relevant results are discussed, including the universal relation between the fluid lag and the toughness. [S0021-8936(00)02401-6]
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference29 articles.
1. Khristianovic, S. A., and Zheltov, Y. P., “Formation of Vertical Fractures by Means of Highly Viscous Fluids,” Proc. 4th World Petroleum Congress, Vol. II, pp. 579–586.
2. Barenblatt, G. I.
, 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., VII, pp. 55–129.
3. Perkins, T. K., and Kern, L. R., 1961, “Widths of Hydraulic Fractures,” SPEJ, 222, pp. 937–949.
4. Nordgren, R. P.
, 1972, “Propagation of Vertical Hydraulic Fracture,” SPEJ, 253, pp. 306–314.
5. Abe, H., Mura, T., and Keer, L. M., 1976, “Growth Rate of a Penny-Shaped Crack in Hydraulic Fracturing of Rocks,” J. Geophys. Res., 81, pp. 5335–5340.
Cited by
253 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献