Characterization of instability mechanisms on sharp and blunt slender cones at Mach 6

Author:

Kennedy Richard E.ORCID,Jewell Joseph S.ORCID,Paredes PedroORCID,Laurence Stuart J.ORCID

Abstract

Experiments are performed to investigate the effect of nose-tip bluntness on the instability mechanisms leading to boundary-layer transition on a $7^{\circ }$ half-angle cone in a Mach-6 free stream. The development of disturbances is characterized using a combination of high-speed calibrated schlieren images and pressure measurements, and the data are compared with results computed using the parabolized stability equations. The approximately 414 mm long cone model is equipped with an interchangeable nose tip ranging from sharp to 5.08 mm in radius. For nose tips with a radius $R_{N}<2.54\ {\rm mm}$ , second-mode instability waves are the dominant mechanism leading to transition. Time-averaged frequency spectra computed from the calibrated schlieren visualizations and pressure measurements are used to compute the second-mode most-amplified frequencies and integrated amplification rates ( $N$ factors). Good agreement is observed between the measurements and computations in the linear-growth regime for the sharp-nose configuration at each free-stream condition. Additionally, a bispectral analysis identifies quadratic phase locking of frequency content responsible for the growth of higher harmonics. For nose tips of $R_{N}\geqslant 2.54\ {\rm mm}$ , the schlieren visualization region is upstream of the entropy-layer swallowing length, and second-mode waves are no longer visible within the boundary layer; instead, elongated, steeply inclined features believed to be associated with non-modal instability mechanisms develop between the entropy-layer and boundary-layer edges. Simultaneously acquired surface pressure measurements reveal high-frequency pressure oscillations similar to second-mode instability waves associated with the trailing edge of these non-modal features.

Funder

Air Force Office of Scientific Research

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3