Vortex-induced vibration of a two degree-of-freedom flexibly mounted circular cylinder in the crossflow direction

Author:

Mousavisani Seyedmohammad,Chowdhury Naumi Noshin,Samsam-Khayani HadiORCID,Samandari HamedORCID,Seyed-Aghazadeh BanafshehORCID

Abstract

Vortex-induced vibration (VIV) of a two degree-of-freedom (DOF) circular cylinder, placed in the test section of a recirculating water tunnel and free to oscillate in its first two vibrational modes in the crossflow direction, is studied experimentally. The dynamic response of the cylinder is studied for a reduced velocity range of $U^*=4\unicode{x2013}30$ for eigenfrequency ratios in the range of 1.3–3.0. For the two DOF system, while the onset of the VIV response followed a similar lock-in region as those observed for a classical VIV response of a single DOF system, by increasing the reduced velocity a secondary lock-in region was observed over which the oscillations of the cylinder were locked into the system's second mode. In addition, there existed an intermediate range of reduced velocity over which the VIV response consisted of oscillations at a combination of the first two natural modes of the system. As the eigenfrequency ratio between the first two modes increased, the secondary lock-in range was extended to higher reduced velocities and the reduced velocity range over which multi-modal oscillations were observed was decreased. A full map of vortex dynamics in the wake of the cylinder was developed qualitatively and quantitatively using hydrogen bubble flow visualization and time-resolved volumetric particle tracking velocimetry techniques, respectively. A Q-criterion analysis revealed the existence of highly three-dimensional vortex structures in the wake of the cylinder. The spatiotemporal mode analysis using the proper orthogonal decomposition technique revealed strong coupling between the vortex shedding modes in the wake of the cylinder and the structural vibration modes.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3