A sparse optimal closure for a reduced-order model of wall-bounded turbulence

Author:

Chua Khoo Zhao,Chan Chi HinORCID,Hwang YongyunORCID

Abstract

In the present study, a set of physics-informed and data-driven approaches are examined towards the development of an accurate reduced-order model for a turbulent plane Couette flow. Based on the utilisation of the proper orthogonal decomposition (POD), a particular focus is given to the development of a reduced-order model where the number of POD modes are not large enough to cover the full dynamics of the given turbulent state, the situation directly relevant to the reduced-order modelling for turbulent flows. Starting from the conventional Galerkin projection approach ignoring the truncation error, three approaches enhanced by both physics and data are examined: (1) sparse regression of the POD-Galerkin dynamics; (2) Galerkin projection with an empirical eddy-viscosity model; (3) Galerkin projection with an optimal eddy viscosity obtained from a newly proposed sparse regression – an idea applying the sparse identification of nonlinear dynamics framework to an eddy-viscosity model. The sparse regression of the POD-Galerkin dynamics does not perform well, as the number of POD modes for the given chaotic dynamics appears to be too small. While the unsatisfactory performance of the Galerkin projection model with an empirical eddy viscosity is observed, the newly proposed approach, which combines the concept of an optimal eddy-viscosity closure with a sparse regression, more accurately approximates the chaotic dynamics than the other reduced-order models considered. This is demonstrated with the mean and time scales of the POD mode amplitudes as well as the first- and second-order turbulence statistics.

Funder

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3