On the dynamics of a collapsing bubble in contact with a rigid wall

Author:

Saini MandeepORCID,Tanne Erwan,Arrigoni Michel,Zaleski StephaneORCID,Fuster DanielORCID

Abstract

This work reveals that the dynamic response of a spherical cap bubble in contact with a rigid wall depends on the effective contact angle at the instant prior to collapse. This parameter allows us to discriminate between two regimes in which the mechanisms of interaction between the collapsing bubble and its surrounding medium differ significantly: when the contact angle is smaller than $90^{\circ }$ , a classical jet directed towards the wall is observed, whereas if the initial contact angle is larger than $90^{\circ }$ , an annular re-entrant jet parallel to the wall appears. We show that this change of behaviour can be explained using the impulse potential flow theory for small times, which shows the presence of a singularity on the initial acceleration of the contact line when the contact angle is larger than $90^{\circ }$ . Direct numerical simulations show that although viscosity regularises the solution at $t > 0$ , the solution remains singular at $t=0$ . In these circumstances, numerical and experimental results show that the collapse of flat bubbles can eventually lead to the formation of a vortex ring that unexpectedly induces long-range effects. The role of the bubble geometry at the instant of maximum expansion on the overall collapse process is shown to be well captured by the impulse potential flow theory, which can be generalised easily to other bubble shapes. These results may find direct application in the interpretation of geophysical flows as well as the control and design of biomedical, naval, manufacturing and sonochemistry applications.

Funder

Agence Nationale de la Recherche

H2020 Marie Skłodowska-Curie Actions

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3