Direct numerical simulations of microlayer formation during heterogeneous bubble nucleation

Author:

Saini M.ORCID,Chen X.,Zaleski S.ORCID,Fuster D.ORCID

Abstract

In this article, we present direct numerical simulation results for the expansion of spherical cap bubbles attached to a rigid wall due to a sudden drop in the ambient pressure. The critical pressure drop beyond which the bubble growth becomes unstable is found to match well with the predictions from classical theory of heterogeneous nucleation imposing a quasi-static bubble evolution. When the pressure drop is significantly higher than the critical value, a liquid microlayer appears between the bubble and the wall. In this regime, the interface outside the microlayer grows at an asymptotic velocity that can be predicted from the Rayleigh–Plesset equation, while the contact line evolves with another asymptotic velocity that scales with a visco-capillary velocity that obeys the Cox–Voinov law. In general, three distinctive regions can be distinguished: the region very close to the contact line where dynamics is governed by visco-capillary effects, an intermediate region controlled by inertio-viscous effects away from the contact line yet inside the viscous boundary layer, and the region outside the boundary layer dominated by inertial effects. The microlayer forms in a regime where the capillary effects are confined in a region much smaller than the viscous boundary layer thickness. In this regime, the global capillary number takes values much larger then the critical capillary number for bubble nucleation, and the microlayer height is controlled by viscous effects and not surface tension.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Cambridge University Press (CUP)

Reference59 articles.

1. Height functions for applying contact angles to 2D VOF simulations

2. A mass-momentum consistent, Volume-of-Fluid method for incompressible flow on staggered grids

3. Early stage of bubble spreading in a viscous ambient liquid

4. Dynamic drying transition via free-surface cusps

5. Guion, A.N. 2017 Modeling and simulation of liquid microlayer formation and evaporation in nucleate boiling using computational fluid dynamics. PhD thesis, Massachusetts Institute of Technology.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3