A secondary modulation mechanism for aerofoil tonal self-noise generation

Author:

Yang YannianORCID,Pröbsting StefanORCID,Li Pengyu,Liu YuORCID,Li YeORCID

Abstract

Acoustic emission of a NACA 0012 aerofoil is investigated over a range of free-stream velocities. Acoustic spectra show a dominant tone and two sets of weaker side tones characterised by different frequency intervals. The frequency of the dominant tones in the acoustic spectra varies with velocity in a ladder-type structure. With increasing Reynolds number, the spectrum becomes progressively more broadband in nature. Through synchronised particle image velocimetry and acoustic measurements, the aeroacoustic noise generation mechanisms, resulting in different spectral characteristics and modulation types, are further investigated. A separation bubble and related significant velocity fluctuations are observed on the pressure side. Pressure side velocity spectra show characteristics similar to the acoustic ones, whereas velocity spectra on the suction side feature broadband characteristics. These findings confirm that noise emission is dominated by pressure side events for the Reynolds number range of this study, i.e. $2 \times 10^{5}$ $7 \times 10^{5}$ . As the acoustic emission is defined by coherent flow structures, the proper orthogonal decomposition method is adopted to facilitate the understanding of the relation between the complex flow field and acoustic emission. Side tones in the acoustic spectra are attributed to two different modulation mechanisms in the aeroacoustic source region near the trailing edge. By aligning the sound pressure time history and the time coefficients of the dominant modes, the primary modulation of the dominant tone is found to be related to the amplitude modulation of the high-frequency velocity fluctuations associated with the acoustic feedback loop. A secondary modulation is attributed to periodic variation of the separation bubble and, therefore, variation in the roll-up of the shear layer, which results in a modulation of the amplitude of the velocity fluctuations associated with the convecting vortices at the trailing edge.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference70 articles.

1. Random Data

2. Chen, L. 2015 Aspects of POD-based wall-layer modeling for the variational multiscale methods. Ph.D. thesis, Delft University of Technology.

3. Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment

4. Design, validation, and benchmark tests of the aeroacoustic wind tunnel in SUSTech

5. Vortex Noise of Isolated Airfoils

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3