Predictive models for near-wall velocity and temperature fluctuations in supersonic wall-bounded turbulence

Author:

Yu MingORCID,Xu ChunxiaoORCID

Abstract

Predictive models for near-wall velocity and temperature fluctuations in compressible wall-bounded turbulence are developed in the present study based on the model proposed by Marusic et al. (Science, vol. 329 (5988), 2010, pp. 193–196), which incorporates the superposition and amplitude modulation effects of the large-scale motions in the outer region on near-wall turbulence. The density variation is involved in the predictive model for velocity fluctuations to achieve Mach number independence. The predictive model for temperature fluctuations is derived to keep its consistency with the strong Reynolds analogy, in which the modulation effect is supposed to be cast as the quadratic function of the large-scale velocity fluctuations. An algebraic method is proposed to directly determine the modulation coefficients and extract the universal signals. A direct numerical simulation (DNS) of turbulent channel flow at the friction Reynolds number of $1170$ and bulk Mach number of $2.88$ is carried out for parameter calibration and validations. The variances and joint probability density functions of the predicted velocity and temperature fluctuations agree well with the DNS results.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3