Wall cooling effect on spectra and structures of thermodynamic variables in hypersonic turbulent boundary layers

Author:

Xu DehaoORCID,Wang JianchunORCID,Chen Shiyi

Abstract

The wall cooling effect on the spectra and structures of thermodynamic variables are investigated in hypersonic turbulent boundary layers. The density and temperature can be divided into the acoustic and entropic modes based on the Kovasznay decomposition. The intensities of the pressure and the acoustic modes of density and temperature attain the maximum values near the wall, while those of the entropy and the entropic modes of density and temperature achieve their primary peaks near the edge of the boundary layer. In the near-wall region, the pressure and the acoustic modes of density and temperature are significantly enhanced when the wall is strongly cooled, which can be attributed to the appearance of the travelling-wave-like alternating positive and negative structures. Moreover, the intensities of the entropy and the entropic modes of density and temperature become stronger near the wall as the wall temperature decreases, due to the appearance of the streaky entropic structures (SES). The SES are mainly caused by the advection effect of the strong positive wall-normal gradient of the mean temperature associated with ejection and sweep events. It is also found that the profiles of the intensities of the entropy, density and temperature are similar to each other far from the wall, which is mainly due to the reason that the entropic modes are dominant in the fluctuating density and temperature in the far-wall region. The acoustic modes of density and temperature only have significant contributions in the near-wall region.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3