The unsteady aerodynamics of insect wings with rotational stroke accelerations, a systematic numerical study

Author:

van Veen Wouter G.ORCID,van Leeuwen Johan L.ORCID,van Oudheusden Bas W.ORCID,Muijres Florian T.ORCID

Abstract

To generate aerodynamic forces required for flight, two-winged insects (Diptera) move their wings back and forth at high wing-beat frequencies. This results in exceptionally high wing-stroke accelerations, and consequently relatively high acceleration-dependent fluid forces. Quasi-steady fluid force models have reasonable success in relating the generated aerodynamic forces to the instantaneous wing motion kinematics. However, existing approaches model the stroke-rate and stroke-acceleration effects independently from each other, which might be too simplified for capturing the complex unsteady aerodynamics of accelerating wings. Here, we use computational-fluid-dynamics simulations to systematically explore how aerodynamic forces and flow dynamics depend on wing-stroke rate, wing-stroke acceleration and wing-planform geometry. Based on this, we developed and calibrated a novel unsteady aerodynamic force model for insect wings with stroke accelerations. This includes improved versions of the translational-force model and the added-mass force model, and we identify a third novel component generated by the interaction of the two. This term reflects the delay in bound-circulation build-up as the wing accelerates. The physical interpretation of this effect is analogous to the Wagner effect experienced by a wing starting from rest. Here, we show that this effect can be modelled in the context of flapping wings as a stroke-acceleration-dependent correction on the translational-force model. Our revised added-mass model includes a viscous force component, which is relatively small but not negligible. We subsequently applied our new model to realistic wing-beat kinematics of hovering Dipteran insects, in a quasi-steady approach. This revealed that stroke-acceleration-related aerodynamic forces contribute substantially to lift and drag production, particularly for high-frequency flapping mosquito wings.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3