Abstract
The migration of polydisperse particles and the formation of self-organized particle chains in a square channel flow of non-Newtonian fluids is studied. The effects of rheological behaviour of the fluid, solution concentration and flow rate are explored experimentally. The direct forcing/fictitious domain method is adopted to qualitatively verify the experiments and further analyse the mechanisms of particle migration and particle chain self-organization. The results show that only particles in viscoelastic fluids with negligible shear-thinning effect will remain at the channel centreline as the flow rate increases. The monodisperse particles reach the same velocity when migrating to the equilibrium position. However, in polydisperse suspensions, the smaller the particle diameter, the greater the velocity when the particle migrates to the equilibrium position. In a viscoelastic fluid, the polydisperse particles are more likely to self-organize into long particle chains along the channel centreline than the monodisperse particles, where the large and small particles are at the front and end of the chain. The dimensionless alignment factor (Af) is adopted to quantify the formation of particle chains, which is the largest in viscoelastic fluids and rapidly increases before decreasing to a stable value as the flow rate increases. For larger particle diameter ratios and stronger shear-thinning effect, the long particle chain self-organization is less obvious. The self-organizing particle chains at the channel centreline are strongly influenced by the fluid elastic properties and weakly by the inertial effect; however, the shear-thinning effect disperses the particles and prevents the formation of long straight particle chains.
Funder
Natural Science Foundation of Zhejiang Province
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献