Surfactant-laden film lining an oscillating cap: problem formulation and weakly nonlinear analysis

Author:

Bouchoris K.,Bontozoglou V.ORCID

Abstract

A surfactant-laden liquid film that lines the inside of an oscillating spherical cap is considered as a model of lung alveoli. Pulmonary surfactant solubility is described by Langmuir adsorption kinetics, modified by incorporating the intrinsic compressibility of the adsorbed monolayer. A novel boundary condition, supported by experimental data and scaling arguments, is applied at the rim. The condition enforces mass conservation of water and surfactant by matching the ‘large-scale’ dynamics of the alveolus to ‘small-scale’ equilibrium over mid-alveolar septa of small but finite thickness. Linear and weakly nonlinear analysis around the conditions in a non-oscillating cap indicates that the occurrence of shearing motion in the liquid is related to the non-zero film thickness over the rim, and shearing velocity at the interface is predicted an order-of-magnitude lower than the velocity of radial oscillation. Marangoni stresses dominate the interfacial dynamics, but capillary stresses affect significantly the interior flow field. In particular, they produce spatial modulations in flow rate, surface concentration of surfactant and wall shear stress, whose length scale varies with $Ca^{-1/3}$ , i.e. is determined by a balance between capillary and viscous forces. Non-zero adsorption kinetics modifies at first order only the amplitude and phase of surface concentration, but affects all other variables at second order. In particular, it sets a steady drift of surfactant away from the alveolus and towards the rim. Finally, an attempt is made to relate the present predictions to physiological findings about air flow and particle deposition inside alveoli, and about shear stress-inflicted damage in diseased lungs.

Funder

ELPEN pharmaceutical

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3