Abstract
The processing of dense suspensions is a crucial step in many industries including mining; the production of ceramics; and the manufacture of pharmaceuticals. It is widely reported that these suspensions exhibit nonlinear behaviours such as shear thinning and thickening, with particle surface contacts recently being accepted as a primary culprit in the latter. In light of this, the modelling community have started to explore the role of particle surface tribology, predominantly by incorporating Coulombic friction models borrowed from the field of dry granular matter. Full details of the interactions between particle surfaces remain unclear, however, and it is suggested that physical interlocking of particle asperities may be key. Here, we use particle-based simulations to explore explicitly the effect of interlocking on the rheology of dense suspensions of micron-sized solids in a Newtonian fluid. Our simplified model recovers shear thinning, thickening and jamming phenomena commonly seen in experiments.
Funder
Royal Academy of Engineering
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献