Rheological Behavior of an Aqueous Suspension of Oxidized Carbon Nanohorn (CNHox)

Author:

Moteki Ayumi1,Kobayashi Motoyoshi2ORCID

Affiliation:

1. Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan

2. Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan

Abstract

Oxidized carbon nanohorn (CNHox) a carbon nanomaterial that has attracted attention due to its unique material properties. It is expected to be applied in various areas like cancer treatment, gene-expression technology, fluids with high thermal conductivity, lubricants, and so on. While the rheological measurements of suspensions provide information on the effective size and interactions of suspended particles, the rheological behaviors of aqueous suspensions of CNHox have never been systematically investigated. To clarify the rheological behaviors of aqueous suspensions of CNHox, their viscosity and dynamic viscoelasticity were measured with changing particle concentration and salt concentration. The viscosity of a CNHox suspension showed yield stress at low shear rates and showed shear-thinning behavior with increasing shear rates. The viscosity of 5 weight % CNHox suspensions was comparable to that of 60 weight % silica suspensions. This high viscosity at a low CNHox concentration is probably due to the porous structure and large effective volume of the CNHox particle. The estimated effective volume of CNHox calculated by the Krieger−Dougherty equation was 18.9 times larger than the actual volume calculated by the mass concentration and density. The dependence of rheological behavior of the CNHox suspension on salt concentration was weak compared to that of the colloidal silica suspension. This weak dependence on salt concentration may be due to the roughness of the particle surface, which would weaken the effect of electric double-layer interactions and/or van der Waals interactions between particles. These rheological behaviors of the aqueous suspension of CNHox shown in this research will be useful in efforts to improve the efficiency of its utilization for the various applications.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3