Anisotropic stresslet and rheology of stick–slip Janus spheres

Author:

Premlata A.R.ORCID,Wei Hsien-HungORCID

Abstract

A Janus sphere with a stick–slip pattern can behave quite differently in its hydrodynamics compared with a no-slip or uniform-slip sphere. Here, using the Lorentz reciprocal theorem in conjunction with surface harmonic expansion, we rigorously derive the extended Faxén formula for the stresslet of a weakly stick–slip Janus sphere, capable of describing the anisotropic nature of the stresslet with an arbitrary axisymmetric stick–slip pattern in an arbitrary background flow. We find that slip anisotropy not only causes a variety of additional contributions to the stresslet, but also naturally renders a stresslet–rotation coupling that may turn a suspension of couple-free stick–slip Janus spheres into a dipolar one under the actions of an external couple. Moreover, to correctly account for the impacts of slip anisotropy on the stresslet, it is necessary to include at least the first four surface harmonic contributions. As a result, the anisotropies of both the stresslet and torque on the sphere in a linear flow field are purely reflected by a symmetric quadrupole and hexadecapole. These hydrodynamic quantities can be further mediated by an antisymmetric dipole and octupole due to the gradients of the imposed strain field. The average bulk stress and effective viscosity for a suspension of stick–slip spheres are also determined, showing characteristics quite distinct from those of a suspension of near spheres. If the spheres possess permanent dipole moments, in particular, additional stresslets and couplets can be generated by an applied external couple on each sphere and added into the bulk stress, accompanied by non-Jeffery orientational orbits of such dipolar stick–slip spheres. In addition to the above, the extended Faxén stresslet and torque relations found in this work will also provide the formulae needed for tackling problems involving hydrodynamically interacting stick–slip spheres on which small slip anisotropy may have profound impacts.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3