Stick-slip squirmers: slip asymmetry can qualitatively change self-swimming characteristics of squirmers

Author:

Yang Fu-LingORCID,Chen You-An,Premlata A.R.ORCID,Wei Hsien-HungORCID

Abstract

A slip asymmetry can break the fore–aft symmetry of the local hydrodynamic force distribution on the surface of an otherwise no-slip or uniform-slip particle. Here, we use the Lorentz reciprocal theorem to demonstrate that such asymmetry, even in a fractional amount, can qualitatively alter the swimming characteristics of a self-propelled spherical squirmer, markedly different from those of no-slip or uniform-slip squirmers. Unlike the usual tangential squirming by the thrust-providing B1 mode and the type-determining B2 mode, we discover two unique features for a stick-slip squirmer. First, the squirmer can acquire a swimming velocity U without the B1 mode but simply by a symmetric extensile/contractile squirming from the B2 mode, which is able to reverse the swimming direction of the squirmer. Second, a stresslet $\boldsymbol{\mathsf{S}}$ can also be induced by a unidirectional squirming from the B1 mode, capable of inverting the squirmer's stresslet from extensile type to contractile type or vice versa to change the squirmer from puller to pusher or in a reverse manner. We further show that the two squirming modes can reinforce or compete with each other to enhance or diminish U and $\boldsymbol{\mathsf{S}}$ due to interplays between the asymmetric squirming forces on the stick and the slip faces. A phase diagram is also established to categorize a variety of newly emerging swimming states, such as an enhanced/degraded puller/pusher and a backward puller/pusher, depending on the relative strength of the squirming modes β = B2/B1, the direction of the stick-slip polarity and the degree of the slip disparity. As a result of such cooperative and competitive natures, a stick-slip squirmer can swim more or less efficiently than no-slip and uniform-slip ones. These distinctive features arising from stick-slip disparity can not only be made geometrically tuneable for steering the motion of a squirmer, but also provide new means for making efficient artificial microswimmers using amphiphilic Janus particles.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3