Abstract
Our understanding of homogeneous vapour bubble growth is currently restricted to asymptotic descriptions of their limiting behaviour. While attempts have been made to incorporate both the inertial and thermal limits into bubble growth models, the early stages of bubble growth have not been captured. By accounting for both the changing inertial driving force and the thermal restriction to growth, we present an inertio-thermal model of homogeneous vapour bubble growth, capable of accurately capturing the evolution of a bubble from the nano- to the macro-scale. We compare our model predictions with: (a) published experimental and numerical data, and (b) our own molecular simulations, showing significant improvement over previous models. This has potential application in improving the performance of engineering devices, such as ultrasonic cleaning and microprocessor cooling, as well as in understanding of natural phenomena involving vapour bubble growth.
Funder
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献