Large-eddy simulation of gusty wind turbulence over a travelling wave

Author:

Hao XuantingORCID,Shen LianORCID

Abstract

Wind gustiness in the marine atmospheric boundary layer affects significantly the dynamics of air–sea interaction. To understand the impacts of wind gust events, we perform large-eddy simulation of wind turbulence over a travelling wave to investigate the response of the wind field to an impulsive wind speed increase or decrease. It is found that the turbulence fluctuations and the terms in the turbulent kinetic energy budget equation have a delayed response to the change in the mean flow, while the response of the wave-coherent motions is quasi-stationary. The wave-coherent motions are investigated quantitatively through comparison with a viscous curvilinear model developed by Cao et al. (J. Fluid Mech., vol. 901, 2020, A27) and Cao & Shen (J. Fluid Mech., vol. 919, 2021, A38). We observe an asymmetric hysteresis between the growing wind and the decaying wind in the evolution of the form drag and the viscous drag. We find further that the variation of the wave growth rate during the wind gust is related closely to the contribution from the out-of-phase component of the vertical velocity. Our discoveries provide evidence for the necessity of improving non-equilibrium turbulence and wind input modelling to account for the wind gustiness effect in future studies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3