Depth-integrated wave–current models. Part 2. Current with an arbitrary profile

Author:

Yang ZhengtongORCID,Liu Philip L.-F.ORCID

Abstract

The depth-integrated wave–current models developed by Yang & Liu (J. Fluid Mech., vol. 883, 2020, A4) are extended to investigate currents with an arbitrary vertical profile in the water column. In the present models, horizontal velocities are decomposed into two components. The first part deduces the prescribed current velocity when waves are absent. The second part is approximated in a polynomial form. The resulting depth-integrated wave–current models are obtained by applying the weighted residual method. In the absence of currents, the present models are identical to those in Yang & Liu (J. Fluid Mech., vol. 883, 2020, A4) and are validated with several three-dimensional (3D) benchmark laboratory experiments. A theoretical analysis is conducted to study the frequency dispersion relation of linear waves on currents with an exponential vertical profile and the results are compared with numerical solutions of the Rayleigh equation. Using the new models, validations and investigations are then conducted for periodic waves and solitary waves on currents with an arbitrary profile in one-dimensional horizontal (1DH) space. Furthermore, the new models are applied to wave–current interactions in two-dimensional horizontal (2DH) space. Two scenarios are considered: (1) wave propagation over a vortex-ring-like current and (2) obliquely incident wave propagation over a 3D sheared current on a varying bathymetry. The vertical and horizontal shear of the current have significant effects on modifying various wave properties, which are well captured by the present models. However, the time-averaged velocity under wave–current interaction shows small differences with the prescribed current velocity, except in the region between the wave trough and crest.

Funder

National Research Foundation Singapore

Agency for Science, Technology and Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3