Transitional hypersonic flow over slender cone/flare geometries

Author:

Butler Cameron S.,Laurence Stuart J.ORCID

Abstract

Experiments are performed in a Mach-6 shock tunnel to examine the laminar-to-turbulent transition process associated with a sudden increase in surface angle on a slender body. A cone/flare geometry with a 5 $^\circ$ frustum and compression angles ranging from 5 $^\circ$ to 15 $^\circ$ allow a range of mean flow configurations, spanning an attached shock-wave/boundary-layer interaction to a fully separated one; the unit Reynolds number of the flow is also varied to modify the state of incoming second-mode boundary-layer disturbances. Ultra-high-speed schlieren visualizations provide a global picture of the flow development, supplemented by high-frequency surface pressure measurements. For the 5 $^\circ$ compression, the unsteady flow field is dominated by the second-mode waves, whose breakdown to turbulence is generally accelerated (compared with the straight-cone configuration) by encountering the angle change. As the compression angle is increased to induce separation, lower-frequency disturbances appear along the separated shear layer that exhibit much larger amplification rates than the incoming second-mode waves; the latter effectively freeze in amplitude downstream of the separation point before rapidly breaking down upon reattachment. The shear-layer disturbances become dominant at the largest compression angle tested. Radiation of disturbance energy to the external flow is consistently observed: this generally occurs along mean flow features (flare, separation or reattachment shocks) for the second-mode disturbances and spontaneously for the shear-layer waves. The combined application of spectral proper orthogonal decomposition and a global bispectral analysis allows the identification of important unsteady flow structures and the association of these with prominent nonlinear interactions in the various configurations.

Funder

Office of Naval Research

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3