Unsteady aerodynamic theory for membrane wings

Author:

Tiomkin SonyaORCID,Jaworski Justin W.ORCID

Abstract

We study analytically the dynamic response of membrane aerofoils subject to arbitrary, small-amplitude chord motions and transverse gusts in a two-dimensional inviscid incompressible flow. The theoretical model assumes linear deformations of an extensible membrane under constant tension, which are coupled aeroelastically to external aerodynamic loads using unsteady thin aerofoil theory. The structural and aerodynamic membrane responses are investigated for harmonic heave oscillations, an instantaneous change in angle of attack, sinusoidal transverse gusts and a sharp-edged gust. The unsteady lift responses for these scenarios produce aeroelastic extensions to the Theodorsen, Wagner, Sears and Küssner functions, respectively, for a membrane aerofoil. These extensions incorporate for the first time membrane fluid–structure interaction into the expressions for the unsteady lift response of a flexible aerofoil. The indicial responses to step changes in the angle of attack or gust profile are characterised by a slower lift response in short times relative to the classical rigid-plate response, while achieving a significantly higher asymptotic lift at long times due to aeroelastic camber. The unsteady lift for harmonic gusts or heaving motions follows closely the rigid plate lift responses at low reduced frequencies but with a reduced lift amplitude and greater phase lag. However, as the reduced frequency approaches the resonance of the fluid-loaded membrane, the lift response amplitude increases abruptly and is followed by a sharp decrease. This behaviour reveals a frequency region, controlled by the membrane tension coefficient, for which membrane aerofoils could possess substantial aerodynamic benefits over rigid aerofoils in unsteady flow conditions.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3