The evolution of coherent vortical structures in increasingly turbulent stratified shear layers

Author:

Jiang XianyangORCID,Lefauve AdrienORCID,Dalziel Stuart B.ORCID,Linden P.F.ORCID

Abstract

We study the morphology of Eulerian vortical structures and their interaction with density interfaces in increasingly turbulent stably stratified shear layers. We analyse the three-dimensional, simultaneous velocity and density fields obtained in the stratified inclined duct laboratory experiment (SID). We track, across 15 datasets, the evolution of coherent structures from pre-turbulent Holmboe waves, through intermittent turbulence, to full turbulence and mixing. We use the rortex–shear decomposition of the local vorticity vectors into a rortex vector capturing rigid-body rotation and a shear vector. We describe the morphology of ubiquitous hairpin-like vortical structures (revealed by the rortex), similar to those commonly observed in boundary-layer turbulence. These are born as relatively weak vortices around the strong three-dimensional shearing structures of confined Holmboe waves, and gradually strengthen and deform under increasing turbulence, transforming into pairs of upward- and downward-pointing hairpins propagating in opposite directions on the top and bottom edge of the shear layer. The pair of legs for each hairpin are counter-rotating and entrain fluid laterally and vertically, whereas their arched-up ‘heads’, which are transverse vortices, entrain fluid vertically. We then elucidate how this large-scale vortex morphology stirs and mixes the density field. Essentially, vortices located at the sharp density interface on either edge of the mixing layer (mostly hairpin heads) engulf blobs of unmixed fluid into the mixing layer, whereas vortices inside the mixing layer (mostly hairpin legs) further stir it, generating strong, small-scale shear, enhancing mixing. These findings provide new insights into the role of turbulent coherent structures in shear-driven stratified mixing.

Funder

European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3