New insights into experimental stratified flows obtained through physics-informed neural networks

Author:

Zhu LuORCID,Jiang XianyangORCID,Lefauve AdrienORCID,Kerswell Rich R.ORCID,Linden P.F.ORCID

Abstract

We develop a physics-informed neural network (PINN) to significantly augment state-of-the-art experimental data of stratified flows. A fully connected deep neural network is trained using time-resolved experimental data in a salt-stratified inclined duct experiment, consisting of three-component velocity fields and density fields measured simultaneously in three dimensions at Reynolds number $= O(10^3)$ and at Prandtl or Schmidt number $=700$ . The PINN enforces incompressibility, the governing equations for momentum and buoyancy, and the boundary conditions at the duct walls. These physics-constrained, augmented data are output at an increased spatio-temporal resolution and demonstrate five key results: (i) the elimination of measurement noise; (ii) the correction of distortion caused by the scanning measurement technique; (iii) the identification of weak but dynamically important three-dimensional vortices of Holmboe waves; (iv) the revision of turbulent energy budgets and mixing efficiency; and (v) the prediction of the latent pressure field and its role in the observed asymmetric Holmboe wave dynamics. These results mark a significant step forward in furthering the reach of experiments, especially in the context of stratified turbulence, where accurately computing three-dimensional gradients and resolving small scales remain enduring challenges.

Funder

Natural Environment Research Council

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Reference38 articles.

1. Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network;Wang;Phys. Fluids,2022

2. The stability of a sheared density interface;Lawrence;Phys. Fluids,1991

3. Stratified inclined duct: two-layer hydraulics and instabilities;Atoufi;J. Fluid Mech.,2023

4. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels;Reynolds;Phil. Trans. R. Soc.,1883

5. Ramachandran, P. , Zoph, B. & Le, Q.V. 2017 Searching for activation functions. arXiv:1710.05941.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3