Fluctuation-induced slip of thermal boundary layers at a stable liquid–liquid interface

Author:

Huang HailongORCID,Xu Wei,Wang YinORCID,Wang Xiaoping,He XiaozhouORCID,Tong PengerORCID

Abstract

We report a systematic experimental study of the mean temperature profile $\theta (\delta z)$ and temperature variance profile $\eta (\delta z)$ across a stable and immiscible liquid–liquid (water–FC770) interface formed in two-layer turbulent Rayleigh–Bénard convection. The measured $\theta (\delta z)$ and $\eta (\delta z)$ as a function of distance $\delta z$ away from the interface for different Rayleigh numbers are found to have the scaling forms $\theta (\delta z/\lambda )$ and $\eta (\delta z/\lambda )$ , respectively, with varying thermal boundary layer (BL) thickness $\lambda$ . By a careful comparison with the simultaneously measured BL profiles near a solid conducting surface, we find that the measured $\theta (\delta z)$ and $\eta (\delta z)$ near the liquid interface can be well described by the BL equations for a solid wall, so long as a thermal slip length $\ell _T$ is introduced to account for the convective heat flux passing through the liquid interface. Direct numerical simulation results further confirm that the turbulent thermal diffusivity $\kappa _t$ near a stable liquid interface has a complete cubic form, $\kappa _t(\xi )/\kappa \sim (\xi +\xi _0)^3$ , where $\kappa$ is the molecular thermal diffusivity of the convecting fluid, $\xi =\delta z/\lambda$ is the normalized distance away from the liquid interface and $\xi _0$ is the normalized slip length associated with $\ell _T$ .

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3